Day 7: Intro to Inequalities and Quadratic Equations

Student question from PLATO:

Teresa has two brothers, Paul and Steve. Paul and Steve are the same height.

Paul is 16 inches shorter than 1 ½ times Teresa's height.

Steve is 6 inches shorter than 1 1/3 times Teresa's height.

How tall is Teresa?

$$p = \frac{3}{2}t - 16$$
$$s = \frac{4}{3}t - 6$$

$$p = \frac{3}{2}t - 16$$
 $s = \frac{4}{3}t - 6$ and, p=s

$$\frac{3}{2}t - 16 = \frac{4}{3}t - 6$$

$$\frac{3}{2}t - 16 = \frac{4}{3}t - 6$$

$$\frac{1}{6}t - 16 = -6$$

$$\frac{1}{6}t - 16 = -6$$
$$\frac{1}{6}t = 10$$

$$t = 60$$

maybe 1.5, 1.6 meters tall)

Inequalities

1 Learn the Skill

An inequality states that two algebraic expressions are not equal. Inequalities are written with less than (<) and greaten than symbols (>), as well as the ≥ symbol which means "greater than or equal to" and the ≤ which means "less than or equal to".

¹ Learn the Skill

- A solution to an inequality can include an infinite amount of numbers. For example, solutions to b < 5 include b = 4.5, 4, 3.99, 3, 2, 1, 0, -3, -10, and so on.
- When each individual solution is plotted as a point on a number line, a solid line is formed, which represents the solution set.

Solving Inequalities

Symbol	Words	Example
>	greater than	x + 3 > 2
<	less than	7x < 28
≥	greater than or equal to	5 ≥ x - 1
≤	less than or equal to	2y + 1 ≤ 7

Solving

Our aim is to have X (or whatever the variable is) **on its own** on the left of the inequality sign:

Something like: x < 5or: $y \ge 11$

We call that "solved".

Example: x + 2 > 12Subtract 2 from both sides: x + 2 - 2 > 12 - 2Simplify: x > 10Solved!

Solving inequalities is very like <u>solving equations</u> ... we do most of the same things ...

... but we must also pay attention to the **direction of the inequality**.

Direction: Which way the arrow "points"

Safe Things To Do

These things **do not affect** the direction of the inequality:

- Add (or subtract) a number from both sides
- Multiply (or divide) both sides by a **positive** number
- Simplify a side

```
Example: 3x < 7+3
```

We can simplify 7+3 without affecting the inequality:

3x < 10

Graphing Inequalities

For this inequality, every number less than 8 is in the solution set. Draw an open circle at 8 because 8 is not in the solution set. Then draw a solid arrow to the left from 8.

the right of 0 as well as 0 is included in the solution set. Draw a closed circle at 0 to show that 0 is included. Then draw a solid arrow pointing to the right

• Five times a number is less than or equal to two times the number plus nine. What is the solution to the inequality?

a) $x \ge 9$ b) $x \le 9$ c) $x \ge 3$ d) $x \le 3$

Practice!

• What is the solution to the inequality x + 5 > 4

a) x > 1
b) x < -1
c) x < 1
d) x > -1

Practice!

- Kara has \$15 and Brett \$22. Together, they have less than the amount needed to buy a pair of concert tickets. Which inequality describes their situation?
- a) 37 < xb) x + 15 < 25c) $x \le 37$ d) $x + 22 \le 15$

Quadratic Equations

Quadratic equations are equations set in the form:

$$ax^{2} + bx + c = 0$$

(a, b, and c can have any value, except that a can't be 0.)

An example of a **Quadratic Equation**:

Quadratic Equations make nice curves, like this one:

An example of a **Quadratic Equation**:

this makes it Quadratic $5x^2 + 3x + 3 = 0$

Quadratic Equations make nice curves, like this one:

In a quadratic equation, you will often be asked to find the ROOTS

The root is the value of x which makes the equation equal to zero. It is where the curve touches the x - axis on a graph. In this example, x = -2 and x = 7

Name

The name **Quadratic** comes from "quad" meaning square, because the variable gets <u>squared</u> (like x^2). It is also called an "Equation of <u>Degree</u> 2" (because of the "2" on the **x**) Here are some examples:

$2x^2 + 5x + 3 = 0$	In this one a=2 , b=5 and c=3
$\mathbf{x^2} - \mathbf{3x} = 0$	This one is a little more tricky:
	 Where is a? Well a=1, as we don't usually write "1x²" b = -3 And where is c? Well c=0, so is not shown.
5x - 3 = 0	Oops! This one is not a quadratic equation: it is missing x^2 (in other words a=0 , which means it can't be quadratic)

Hidden Quadratic Equations!

As we saw before, the Standard Form of a Quadratic Equation is

```
ax^2 + bx + c = 0
```

But sometimes a quadratic equation doesn't look like that!

For example:

In disguise		In Standard Form	a, b and c
$x^2 = 3x - 1$	Move all terms to left hand side	$x^2 - 3x + 1 = 0$	a=1, b=-3, c=1
$2(w^2 - 2w) = 5$	Expand (undo the brackets), and move 5 to left	$2w^2 - 4w - 5 = 0$	a=2, b=-4, c=-5
z(z-1) = 3	Expand, and move 3 to left	$z^2-z-3=0$	a=1, b=-1, c=-3

How To Solve Them?

The "**solutions**" to the Quadratic Equation are where it is **equal to zero**. They are also called "**roots**", or sometimes "**zeros**"

There are usually 2 solutions (as shown in this graph).

And there are a few different ways to find the solutions:

We can Factor the Quadratic (find what to multiply to make the Quadratic Equation)

Or we can <u>Complete the Square</u>

Or we can use the special **Quadratic Formula**:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Just plug in the values of a, b and c, and do the calculations.

We will look at this method in more detail now.

To factor a Quadratic is to:

find what to multiply to get the Quadratic

It is called "Factoring" because we find the factors (a factor is something we multiply by)

Example:

Multiplying (x+4) and (x-1) together (called Expanding) gets $x^2 + 3x - 4$:

So (x+4) and (x-1) are factors of $x^2 + 3x - 4$

Just to be sure, let us check:

$$(x+4)(x-1) = x(x-1) + 4(x-1)$$
$$= x^{2} - x + 4x - 4$$
$$= x^{2} + 3x - 4 \checkmark$$

Yes, (x+4) and (x-1) are definitely factors of $x^2 + 3x - 4$

Did you see that Expanding and Factoring are opposites?

Expand (x+4)(x-1) $x^{2}+3x-4$ Factor

Expanding is usually easy, but Factoring can often be tricky.

It is like trying to find which ingredients went into a cake to make it so delicious. It can be hard to figure out!

Common Factor

First check if there any common factors.

Example: what are the factors of $6x^2 - 2x = 0$?

6 and 2 have a common factor of 2:

$$2(3x^2-x)=0$$

And x^2 and x have a common factor of x:

$$2x(3x-1)=0$$

And we have done it! The factors are 2x and 3x - 1,

We can now also find the **roots** (where it equals zero):

• 2x is 0 when **x** = **0**

•
$$3x - 1$$
 is zero when $\mathbf{x} = \frac{1}{3}$

And this is the graph (see how it is zero at x=0 and x= $\frac{1}{3}$):

A Method For Simple Cases

Luckily there is a method that works in simple cases.

With the quadratic equation in this form:

```
ax^{2} + bx + c = 0
```

Step 1: Find two numbers that multiply to give **ac** (in other words a times c), and add to give **b**.

Example: $2x^2 + 7x + 3$

ac is $2 \times 3 = 6$ and b is 7

So we want two numbers that multiply together to make 6, and add up to 7

In fact **6** and **1** do that $(6 \times 1 = 6, \text{ and } 6 + 1 = 7)$

```
How do we find 6 and 1?

It helps to list the factors of ac=6, and then try adding some to get b=7.

Factors of 6 include 1, 2, 3 and 6.

Aha! 1 and 6 add to 7, and 6\times 1=6.
```

Step 2: Rewrite the middle with those numbers:

Rewrite 7x with **6**x and **1**x:

 $2x^2 + 6x + x + 3$

Step 3: Factor the first two and last two terms separately:

The first two terms $2x^2 + 6x$ factor into 2x(x+3)

The last two terms x+3 don't actually change in this case

So we get:

2x(x+3) + (x+3)

Step 4: If we've done this correctly, our two new terms should have a clearly visible common factor.

In this case we can see that (x+3) is common to both terms, so we can go: Start with: 2x(x+3) + (x+3)Which is: 2x(x+3) + 1(x+3)And so: (2x+1)(x+3)

Done!

Check: $(2x+1)(x+3) = 2x^2 + 6x + x + 3 = 2x^2 + 7x + 3$ (Yes)

Let's see Steps 1 to 4 again, in one go:

 $2x^{2} + 7x + 3$ $2x^{2} + 6x + x + 3$ 2x(x+3) + (x+3) 2x(x+3) + 1(x+3) (2x+1)(x+3)

Factors: Algebraic Identities

Factorize each polynomial using algebraic identities.

1) $x^2 + 10x + 25$ 2) $36u^2 - 12uv + v^2$

3)
$$4a^2 - 4a + 1$$

4) $16p^2 + 56p + 49$

Factor each expression:

$15x^2 + 52x + 45$

Factor each expression:

$8x^2 + 26x + 20$

Factor each expression:

21x² - x - 2

Homework!

Active Assignments		
Week 7		
To begin, select an a	ctivity from All Activities	Select New Activity
All Activities	Completion: 0/5 (0%)	No Due Date