> Day 7:
> Intro to

Inequalities and Quadratic Equations

Student question from PLATO:
Teresa has two brothers, Paul and Steve. Paul and Steve are the same height.

Paul is 16 inches shorter than $1 \frac{1}{2}$ times Teresa's height.
Steve is 6 inches shorter than $11 / 3$ times Teresa's height. How tall is Teresa?

$$
\begin{aligned}
p & =\frac{3}{2} t-16 \\
s & =\frac{4}{3} t-6
\end{aligned}
$$

Student question from PLATO:

Teresa has two brothers, Paul and Steve. Paul and Steve are the same height.
Paul is 16 inches shorter than $11 / 2$ times Teresa's height.
Steve is 6 inches shorter $11 / 3$ times Teresa's height.
How tall is Teresa?
$=3 / 3$
have one third extra
$/ 3+1 / 3=4 / 3$
converted a mixed fraction
to an "improper fraction"
$s=\frac{4}{3} t-6$
yecause it's easier to do math

$$
p=\frac{3}{2} t-16
$$

$\mathrm{t}=$ Teresa's height

$$
p=\frac{3}{2} t-16 \quad s=\frac{4}{3} t-6
$$

and, $\mathrm{p}=\mathrm{s}$

$$
\frac{3}{2} t-16=\frac{4}{3} t-6
$$

```
\square ๑.0 E% =
File Home Insert
\[
s=\frac{4}{3} t-6
\]
and, \(p=s\)
\[
\frac{3}{2} t-16=\frac{4}{3} t-6
\]
How many variables do I have? One: (t) Do I see any t^2 or t^3? No.
So, this is a linear equation with one variable.
Get the variable by itself by doing the same thing to both sides of the equation.
```

$$
\frac{3}{2} t-16=\frac{4}{3} t-6
$$

$$
\frac{1}{6} t-16=-6
$$

$$
\frac{1}{6} t-16=-6
$$

$$
\frac{1}{6} t=10
$$

$$
t=60
$$

$$
\begin{gathered}
\frac{1}{6} t-16=-6 \\
+16 \quad+16
\end{gathered}
$$

$$
\frac{1}{6} t=10
$$

*6 *6

$$
t=60
$$

Teresa is 60 inches tall. (This is 5 feet tall, or maybe 1.5, 1.6 meters tall)

Learn the Skill

- An inequality states that two algebraic expressions are not equal. Inequalities are written with less than $(<)$ and greaten than symbols ($>$), as well as the \geq symbol which means "greater than or equal to" and the \leq which means "less than or equal to".

1) Learn the Skill

- An inequality states that two algebraic expressior are not equal. Inequalities are written with less th (<) and greaten than symbols (>), as well as th symbol which means "greater than or equal to" a। the \leq which means "less than or equal to".

Water will be frozen at ≤ 0 degrees Celsius
At zero degrees Celsius, water is frozen
Water will be liquid at > 0 degrees Celsius

1) Learn the Skill

- A solution to an inequality can include an infinite amount of numbers. For example, solutions to $b<5$ include $b=4.5,4,3.99,3,2,1,0,-3,-10$, and so on.
- When each individual solution is plotted as a point on a number line, a solid line is formed, which represents the solution set.

Solving Inequalities

Symbol
$>\quad$ greater than $<\quad$ less than $7 x<28$
$\geq \quad$ greater than or equal to $5 \geq x-1$
$\leq \quad$ less than or equal to $\quad 2 y+1 \leq 7$

Solving

Our aim is to have X (or whatever the variable is) on its own on the left of the inequality sign:

$$
\begin{aligned}
\text { Something like: } & x<5 \\
\text { or: } & y \geq 11
\end{aligned}
$$

We call that "solved".

Example: $x+2>12$

Subtract 2 from both sides:

$$
x+2-2>12-2
$$

Simplify:

$$
x>10
$$

Solved!

How to Solve

Solving inequalities is very like solving equations ... we do most of the same things ...
... but we must also pay attention to the direction of the inequality.

Direction: Which way the arrow "points"

Some things can change the direction!
< becomes >
$>$ becomes $<$
\leq becomes \geq
\geq becomes \leq

Safe Things To Do

These things do not affect the direction of the inequality:

- Add (or subtract) a number from both sides
- Multiply (or divide) both sides by a positive number
- Simplify a side

Example: $3 \mathrm{x}<7+3$

We can simplify $7+3$ without affecting the inequality:

$$
3 x<10
$$

Graphing Inequalities

 solid arrow to the left from 8.

For this inequality, each number to the right of 0 as well as 0 is included in the solution set. Draw a closed circle at 0 to show that 0 is included. Then draw a solid arrow pointing to the right

- Five times a number is less than or equal to two times the number plus nine. What is the solution to the inequality?
a) $x \geq 9$
b) $x \leq 9$
c) $x \geq 3$
d) $x \leq 3$

Practice!

-What is the solution to the inequality $x+5>4$
a) $x>1$
b) $x<-1$
c) $x<1$
d) $x>-1$

Practice!

- Kara has $\$ 15$ and Brett $\$ 22$. Together, they have less than the amount needed to buy a pair of concert tickets. Which inequality describes their situation?
a) $37<x$
b) $x+15<25$
c) $x \leq 37$
d) $x+22 \leq 15$

Quadratic Equations

Learn the Skill

- Quadratic equations are equations set in the form:

$$
a x^{2}+b x+c=0
$$

(\mathbf{a}, \mathbf{b}, and \mathbf{c} can have any value, except that a can't be 0.)

An example of a Quadratic Equation:

$$
5 x^{2}+3 x+3=0
$$

Quadratic Equations make nice curves, like this one:

esign Transitions Animations Slide

An example of a Quadratic Equation:

$$
5 x^{2}+3 x+3=0
$$

Quadratic Equations make nice curves, like this one:
In a quadratic equation, you will often be asked to find the ROOTS

The root is the value of x which makes the equation equal to zero. It is where the curve touches the x - axis on a graph. In this example, $x=-2$ and x

$$
=7
$$

Name

The name Quadratic comes from "quad" meaning square, because the variable gets squared (like $\mathbf{x}^{\mathbf{2}}$).

It is also called an "Equation of Degree 2" (because of the "2" on the \mathbf{x})

Here are some examples:

$2 x^{2}+5 x+3=0$	In this one $\mathbf{a = 2 , b = 5}$ and $\mathbf{c}=\mathbf{3}$
$x^{2}-3 x=0$	This one is a little more tricky: - Where is \mathbf{a} ? Well $\mathbf{a}=\mathbf{1}$, as we don't usually write " $1 \mathrm{x}^{2}$ " - $\mathbf{b}=-3$ - And where is \mathbf{c} ? Well $\mathbf{c}=\mathbf{0}$, so is not shown.
$5 x-3=0$	Oops! This one is not a quadratic equation: it is missing $\mathbf{x}^{\mathbf{2}}$ (in other words $\mathbf{a}=\mathbf{0}$, which means it can't be quadratic)

Hidden Quadratic Equations!

As we saw before, the Standard Form of a Quadratic Equation is

$$
a x^{2}+b x+c=0
$$

But sometimes a quadratic equation doesn't look like that!
For example:

In disguise		In Standard Form	a, b and c
$x^{2}=3 x-1$	Move all terms to left hand side	$x^{2}-3 x+1=0$	$a=1, b=-3, c=1$
$2\left(w^{2}-2 w\right)=5$	Expand (undo the brackets), and move 5 to left	$2 w^{2}-4 w-5=0$	$a=2, b=-4, c=-5$
$z(z-1)=3$	Expand, and move 3 to left	$z^{2}-z-3=0$	$a=1, b=-1, c=-3$

How To Solve Them?

The "solutions" to the Quadratic Equation are where it is equal to zero.
They are also called "roots", or sometimes "zeros"

There are usually 2 solutions (as shown in this graph).

And there are a few different ways to find the solutions:

We can Factor the Quadratic (find what to multiply to make the Quadratic Equation)

Or we can Complete the Square

Or we can use the special Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Just plug in the values of a, b and c, and do the calculations.
We will look at this method in more detail now.

To factor a Quadratic is to:

find what to multiply to get the Quadratic

It is called "Factoring" because we find the factors (a factor is something we multiply by)

Example:

Multiplying ($\mathbf{x + 4}$) and ($\mathbf{x}-\mathbf{1}$) together (called Expanding) gets $\mathbf{x}^{\mathbf{2}}+\mathbf{3 x} \mathbf{- 4}$:

So $(x+4)$ and $(x-1)$ are factors of $\mathbf{x}^{2}+3 x-4$
Just to be sure, let us check:

$$
\begin{aligned}
(x+4)(x-1) & =x(x-1)+4(x-1) \\
& =x^{2}-x+4 x-4 \\
& =x^{2}+3 x-4
\end{aligned}
$$

Yes, $\left(\mathbf{x + 4)}\right.$ and ($\mathbf{x - 1}$) are definitely factors of $\mathbf{x}^{\mathbf{2}}+\mathbf{3 x} \mathbf{- 4}$

Did you see that Expanding and Factoring are opposites?

$$
(x+4)(x-1) x_{\text {Factor }}^{\text {Expand }} x^{2}+3 x-4
$$

Expanding is usually easy, but Factoring can often be tricky.

$$
? \times ?=\text { E褚 }
$$

It is like trying to find which ingredients went into a cake to make it so delicious.

It can be hard to figure out!

Common Factor

First check if there any common factors.

Example: what are the factors of $6 x^{2}-2 x=0$?
6 and $\mathbf{2}$ have a common factor of $\mathbf{2}$:

$$
2\left(3 x^{2}-x\right)=0
$$

And $\mathbf{x}^{\mathbf{2}}$ and \mathbf{x} have a common factor of \mathbf{x} :

$$
2 x(3 x-1)=0
$$

And we have done it! The factors are $\mathbf{2 x}$ and $\mathbf{3 x} \mathbf{- 1}$,

We can now also find the roots (where it equals zero):

- $2 x$ is 0 when $\mathbf{x}=\mathbf{0}$
- $3 x-1$ is zero when $\mathbf{x}=\frac{\mathbf{1}}{\mathbf{3}}$

And this is the graph (see how it is zero at $\mathrm{x}=0$ and $\mathrm{x}=\frac{1}{3}$):

A Method For Simple Cases

Luckily there is a method that works in simple cases.
With the quadratic equation in this form:

$$
a x^{2}+b x+c=0
$$

Step 1: Find two numbers that multiply to give ac (in other words a times c), and add to give b .

```
Example: }2\mp@subsup{x}{}{2}+7x+
ac is 2\times3 = 6 and b is 7
```

So we want two numbers that multiply together to make 6, and add up to 7
In fact 6 and 1 do that ($6 \times 1=6$, and $6+1=7$)

How do we find 6 and 1 ?
It helps to list the factors of $\mathrm{ac}=\mathbf{6}$, and then try adding some to get $\mathrm{b}=\mathbf{7}$.
Factors of 6 include 1, 2, 3 and 6.
Aha! 1 and 6 add to 7 , and $6 \times 1=6$.

Step 2: Rewrite the middle with those numbers:

Rewrite $7 x$ with $6 x$ and $1 x$:

$$
2 x^{2}+6 x+x+3
$$

Step 3: Factor the first two and last two terms separately:

The first two terms $2 x^{2}+6 x$ factor into $2 x(x+3)$
The last two terms $x+3$ don't actually change in this case
So we get:

$$
2 x(x+3)+(x+3)
$$

Step 4: If we've done this correctly, our two new terms should have a clearly visible common factor.

In this case we can see that $(x+3)$ is common to both terms, so we can go:

$$
\begin{aligned}
\text { Start with: } & 2 x(x+3)+(x+3) \\
\text { Which is: } & 2 x(x+3)+1(x+3) \\
\text { And so: } & (2 x+1)(x+3)
\end{aligned}
$$

Done!
Check: $(2 x+1)(x+3)=2 x^{2}+6 x+x+3=2 x^{2}+7 x+3$ (Yes)

Let's see Steps 1 to 4 again, in one go:

$$
\begin{gathered}
2 x^{2}+7 x+3 \\
2 x^{2}+6 x+x+3 \\
2 x(x+3)+(x+3) \\
2 x(x+3)+1(x+3) \\
(2 x+1)(x+3)
\end{gathered}
$$

Factors: Algebraic Identities

Factorize each polynomial using algebraic identities.

1) $x^{2}+10 x+25$ 2) $36 u^{2}-12 u v+v^{2}$
2) $4 a^{2}-4 a+1$
3) $16 \mathrm{p}^{2}+56 \mathrm{p}+49$

Factor each expression:

$$
15 x^{2}+52 x+45
$$

Factor each expression:

$$
8 x^{2}+26 x+20
$$

Factor each expression:

$$
21 x^{2}-x-2
$$

Homework!

Active Assignments

NEW) Week 7

To begin, select an activity from All Activities

All Activities

