Day 13:
 Complex Shapes and Scales

UHIDAS EN SCRVIIO

Warm-Up:
Find the perimeter of shapes below

Key

Understanding

Complex geometrical figures can be divided into smaller shapes.

Complex
 Shapes

Composite plane figures are made up of two or more 2-D shapes.

The perimeter of a composite plane figure is the distance around the entire figure.

It can be calculated by adding the lengths of the exterior side.

To find the area of a complex figure, divide the figure into simple shapes

What is the perimeter of the figure?

Kirsten sewed a tablecloth in the shape shown below. What is the area of her tablecloth in square feet?

A. 26
B. 40
C. 47.9
D. 59.625

A kindergarten student designs the following shape using blocks on the carpet floor.

What is the area of the triangular portion of the figure?
A. $12.5 \mathrm{~m}^{2}$
B. $25 \mathrm{~m}^{2}$
C. $50 \mathrm{~m}^{2}$
D. $59.63 \mathrm{~m}^{2}$

If the width of the rectangle is 5 m , what is the total area of the figure above?
A. $5 \mathrm{~m}^{2}$
B. $12.5 \mathrm{~m}^{2}$
C. $50 \mathrm{~m}^{2}$
D. $62.5 \mathrm{~m}^{2}$

Scale Drawings

Congruent Figures

- Two figures that are exactly the same and have corresponding angles and sides

Similar Figures

- Two figures that have equal angles but the lengths of their sides are proportional

The corresponding sides of similar figures are proportional.

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

The ratios of the corresponding sides are the same.

These Figures Are Similar

Scale Drawings

- Scale drawings, involving maps and blueprints, are similar figures.
- A scale factor is the ratio of a dimension in a scale drawing to the corresponding dimension in an actual drawing or reality.
- Ratios can be used to determine the scale factor of a drawing.
- Proportions can be used to determine an unknown dimension in an actual or scale drawing, given the scale factor and the corresponding dimension.

Scale
 Interpretation

$1: 20 \quad 1$ unit on the drawing is 20 units.
$1 \mathrm{~cm}: 1 \mathrm{~m}$ 1 cm on the drawing is 1 m .
$\frac{1}{4} \mathrm{in}$. $=1 \mathrm{ft} \quad \frac{1}{4} \mathrm{in}$. on the drawing is 1 ft .

Reading Math

The scale $a: b$ is read " a to b." For example, the scale $1 \mathrm{~cm}: 3 \mathrm{ft}$ is read "one centimeter to three feet."
A. The length of an object on a scale drawing is $\mathbf{2 ~ c m}$, and its actual length is $\mathbf{8 ~ m}$. The scale is 1 cm : __ m . What is the scale?

$$
\frac{1 \mathrm{~cm}}{x \mathrm{~m}}=\frac{2 \mathrm{~cm}}{8 \mathrm{~m}} \text { Set up proportion using } \frac{\text { scale length }}{\text { actual length }} \text {. }
$$

$1 \cdot 8=x \cdot 2$ Find the cross products.
$8=2 x$
$4=x \quad$ Solve the proportion.
The scale is $1 \mathrm{~cm}: 4 \mathrm{~m}$.

Example Problems

- Parallelogram ABCD ~ parallelogram EFGH. Find the value of X.
- Hint: Write a proportion for corresponding

Side AB corresponds to side EF. So $\mathrm{x} / 18=16 / 24$
Write the CROSS PRODUCT.
Divide and Simplify to SOLVE for $X . X=12$

Try This...

- Parallelogram KLMN is similar to parallelogram ABCD in the previous example. Find the value of Y.
- Remember, $X=12$ on Parallelogram ABCD.

Homework!

Active Assignments

NEW) Week 13

To begin, select an activity from All Activities

All Activities

