Day 13:
Complex
Shapes
and Scales

Warm-Up: Find the perimeter of shapes below

+

Key Understanding

Complex geometrical figures can be divided into smaller shapes.

Complex Shapes

Composite plane figures are made up of two or more 2-D shapes.

The perimeter of a composite plane figure is the distance around the entire figure.

It can be calculated by adding the lengths of the exterior side.

To find the area of a complex figure, divide the figure into simple shapes

What is the perimeter of the figure?

$$A = 40 + 30 + 60 = 130$$
 square centimeters

Kirsten sewed a tablecloth in the shape shown below. What is the area of her tablecloth in square feet?

A. 26

B. 40

C. 47.9

D. 59.625

A kindergarten student designs the following shape using blocks on the carpet floor.

What is the area of the triangular portion of the figure?

A. 12.5 m²

B. 25 m²

C. 50 m²

D. 59.63 m²

If the width of the rectangle is 5 m, what is the total area of the figure above?

A. 5 m²

B. 12.5 m²

C. 50 m²

D. 62.5 m²

Congruent Figures

 Two figures that are exactly the same and have corresponding angles and sides

Similar Figures

 Two figures that have equal angles but the lengths of their sides are proportional

The corresponding sides of similar figures are **proportional**.

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

The <u>ratios</u> of the corresponding sides are the same.

These Figures Are Similar

The symbol ~ means "is similar to".

To the right,

 $\triangle ABC \sim \triangle XYZ$.

Scale Drawings

- Scale drawings, involving maps and blueprints, are similar figures.
- A scale factor is the ratio of a dimension in a scale drawing to the corresponding dimension in an actual drawing or reality.
- Ratios can be used to determine the scale factor of a drawing.
- Proportions can be used to determine an unknown dimension in an actual or scale drawing, given the scale factor and the corresponding dimension.

Scale

Interpretation

1:20

1 unit on the drawing is 20 units.

1 cm: 1 m

1 cm on the drawing is 1 m.

$$\frac{1}{4}$$
in. = 1 ft

 $\frac{1}{4}$ in. = 1 ft $\frac{1}{4}$ in. on the drawing is 1 ft.

Reading Math

The scale a:b is read "a to b." For example, the scale 1 cm:3 ft is read "one centimeter to three feet."

A. The length of an object on a scale drawing is 2 cm, and its actual length is 8 m. The scale is 1 cm: ___ m. What is the scale?

$$\frac{1 \text{ cm}}{x \text{ m}} = \frac{2 \text{ cm}}{8 \text{ m}}$$
 Set up proportion using $\frac{\text{scale length}}{\text{actual length}}$.

1 • 8 =
$$x$$
 • 2 Find the cross products.

$$8 = 2x$$

$$4 = x$$
 Solve the proportion.

The scale is 1 cm:4 m.

Example Problems

- Parallelogram ABCD ~ parallelogram
 EFGH. Find the value of X.
- Hint: Write a proportion for corresponding

Side AB corresponds to side EF. So x/18 = 16/24

Write the CROSS PRODUCT.

Divide and Simplify to SOLVE for X. X = 12

Try This...

- Parallelogram KLMN is similar to parallelogram ABCD in the previous example. Find the value of Y.
 - Remember, X = 12 on Parallelogram ABCD.

Homework!

